

RZ-003-001618

Seat No.

Third Year B. Sc. (Sem. VI) (CBCS) Examination

March - 2019

BSMT - 603 (A) : Optimization and Numerical Analysis - II (Theory)

Faculty Code: 003

Subject Code: 001618

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instructions: (1) All questions are compulsory.

- (2) Figures to the right indicate full marks.
- 1 Answer the following objective type questions briefly in your answer book:
 - (1) Write the standard form of Linear Programming Problem.
 - (2) Define: A Convex set.
 - (3) Define Concave Function.
 - (4) What is surplus variable with respect to the Linear Programming Problems?
 - (5) In simplex method if the objective function is of minimization then what are the changes we make in objective function of the given Linear Programming Problem?.

- (6) Which is the best method to find initial solution of transportation problem? Why?
- (7) What is the full form of the LCM method used to obtain an initial solution of transportation problem?
- (8) Define: Convex Linear Combination
- (9) Define: Degenerate B. F. S.
- (10) Who invented the assignment algorithm?
- (11) Define: interpolation.
- (12) To interpolate near middle of the difference table which formulae are most suitable?
- (13) When the arguments are unequally spaced, which formulae are used for interpolation?
- (14) What is a special case of Bessel's formula?
- (15) What is drawback of Lagrange's interpolation formula?
- (16) What is Numerical integration?
- (17) Which formula is also known as Newton-cot's formula?
- (18) What is fifth divided difference of the polynomial of degree four?
- (19) Write General Quadrature formula.
- (20) Write Simpson's $\frac{1}{3}$ rule.
- 2 (A) Attempt any three:

6

- (1) Define:
 - (i) Feasible solution of Linear Programming Problem.
 - (ii) Non-degenerate B. F. S (w. r. t. Linear Programming Problem)

(2) Find the dual of the following primal linear programming problem:

Maximize :
$$Z = x_1 - x_2 + 3x_3$$

Subject to the constraints:

$$x_1 + x_2 + x_3 \le 10$$

$$2x_1 - x_3 \le 2$$

$$2x_1 - 2x_2 - 3x_3 \le 6$$

and
$$x_1, x_2, x_3 \ge 0$$

- (3) Write formulae for d_{ij} in the occupied cells and unoccupied cells in MODI method to solve the transportation problems.
- (4) Explain the meaning of Optimization.
- (5) Write General Mathematical form of Assignment Problem
- (6) Write full form of B.F.S. and define the same with respect to Linear Programming Problems.

(B) Attempt any three:

9

(1) Obtain the INITIAL solution of given transportation problem using LCM method.

		TO					
						Supply	
	$\overline{S_1}$	19	30	50	10	7	
From	S_2	70	30 30 8	40	60	9	
	S_3	40	8	70	20	18	
	Demand	5	8	7	14	34	

- (2) Obtain the Initial solution of the above transportation problem using NWCM (North West Corner Method).
- (3) Obtain the dual of the following:

Minimize : $Z = 5x_1 + x_2 - 6x_3$

Subject to the constraints

$$-2x_1 + x_2 + 11x_3 \le -2$$

$$-x_1 + 7x_2 + x_3 \ge 7$$

$$3x_1 - x_2 + 4x_3 \le 5$$

and
$$x_1, x_2, x_3 \ge 0$$
.

- (4) Explain the rules of obtaining Dual LPP out of Primal LPP.
- (5) Write the general mathematical form of the Linear Programming problems.
- (6) Write the steps of the graphical method to solve the linear programming problems..
- (C) Attempt any two:

10

(1) Find the OPTIMUM solution of given ASSIGNMENT PROBLEM.

	Men				
Tasks 2 3 4	I	II	III	IV	
1	8	26	17	11	
Tasks 2	13	28	4	26	
3	38	19	18	15	
4	19	26	24	10	

(2) Obtain the OPTIMUM solution of given Transportation Problem using MODI method.

Destination

		D_1	D_2	D_3	D_4	Supply
	$\overline{S_1}$	5	3	6	4	30
Origin	S_2	3	4	7	8	15
	S_3	9	6	5	8	15
	Demand	10	25	18	7	60

(3) Find ONLY BFS and construct ONLY FIRST
TABLE to solve the following LPP using SIMPLEX
METHOD (complete solution is not required)

Maximize :
$$Z = 3x_1 + 5x_2 + 4x_3$$

Subject to the constraints

$$2x_1 + 3x_2 \le 8$$
$$2x_2 + 5x_3 \le 10$$
$$3x_1 + 2x_2 + 4x_3 \le 15$$

and
$$x_1, x_2, x_3 \ge 0$$
.

- (4) Explain steps of Two Phase Method to solve the Linear Programming Problems.
- (5) Write the steps of Vogel's Approximation method to find initial solution of transportation problem.
- **3** (A) Attempt any **three**:

6

- (1) If $f(x) = x^3$ then find f(1, 3, 5, 7).
- (2) If $f(x) = x^{-1}$ then find $f(x_0, x_1)$.
- (3) In usual notation prove that

$$D^{3} = \frac{1}{h^{3}} \left[\Delta^{3} - \frac{3}{2} \Delta^{4} + \frac{7}{4} \Delta^{5} + \dots \right]$$

- (4) State Trapezoidal and Simpson's $\frac{3}{8}$ rule.
- (5) Using Picard's method, find y(0.1) given that y' = 1 + xy, y(0) = 1, h = 0.1.
- (6) Find the value of y at x = 0.2 by Euler's method $\frac{dy}{dx} = 2x + y, y(0) = 1.$
- (B) Attempt any three:

9

- (1) If $y_{20} = 512$, $y_{30} = 439$, $y_{40} = 346$ and $y_{50} = 243$ then using Bessel's formula find the value of y_{25} .
- (2) Apply Lagrange's formula to find f(5) given that f(1) = 2, f(2) = 4. f(3) = 8, f(4) = 16 and f(17) = 128.
- (3) Given that

x	1	1.1	1.2	1.3	1.4	1.5	1.6
y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

Find
$$\frac{dy}{dx}$$
.

- (4) Find the value of $\int_2^6 \frac{dx}{x}$ by 1. Trapezoidal rule 2. Simpson's $\frac{1}{3}$.
- (5) Use Range's method to find y(0.2) given that y' = x + y, y(0) = 1.
- (6) Using Taylor series method solve $y' = xy + y^2$, y(0) = 1 at x = 0.1.

(C) Attempt any two:

- **10**
- (1) State and prove Gauss forward interpolation formula.
- (2) State and prove Laplace-Everett's formula.
- (3) State and prove General Quadrature formula.
- (4) State and prove Simpson's $\frac{3}{8}$ rule.
- (5) Find the value of y at x = 0.2, 0.4, 0.8, 1 by Euler's method $\frac{dy}{dx} = 2x + y, y(0) = 1$.